PK/PD/Systems Modeling: Lessons from Corticosteroids

William J. Jusko, Ph.D. SUNY Distinguished Professor Department of Pharmaceutical Sciences

Oscar B Hunter Career Award ASCPT March 23, 2018

Lecture Outline

- How various animal, clinical, and theoretical studies with corticosteroids have provided ideas to advance the fields of PK and PD.
- Placement within the array of basic PK and PD model components.
- Synthesis of more complex models in moving towards systems pharmacology.

Partial Reference:

Jusko WJ, *Foundations of Pharmacodynamic Systems Analysis*, In: Systems Pharmacology and Pharmacodynamics, AAPS Advances in the Pharmaceutical Sciences Series 23, ISBN: 978-3-319-44534-2, Chap 8, pp. 161-175, Springer, New York, Editors: DM Mager and H Kimko (2016).

The Edifice*

The Science

Pharmacodynamics

*Definitions: An impressive structure; A complex system of beliefs

The Thrill of Big Ideas Every so often in the

Every so often in the history of science, a theory is presented that transforms our thinking about the universe we inhabit. The Earth revolves around the Sun. In the 16th century, Copernicus' heliocentric theory of the heavens ushered in the age of modern science.

What goes up must come down. In the 17th century, Sir Isaac Newton showed that the Law of Gravity applied to all objects in the universe.

E=mc². Perhaps the most famous equation ever. Albert Einstein's Theory of Relativity revolutionized ideas about energy.

Think small. Niels Bohr was a contributor to quantum mechanics, which explains the universe at the atomic level and is the basis for our electronic devices.

PARADE . MAY 27, 2007 . PAGE 5

Kinetics of Pharmacological Effects *CPT - 1966*

ASCPT Hunter Awards: Levy 1982

Clearance Concepts in Pharmacokinetics JPB - 1973

Benet 2010

My Early Publications

J. Pharm. Sci. 54: 219-225 (1965). Effect of Viscosity on Drug Absorption By GERHARD LEVY and WILLIAM J. JUSKO

J. Pharm. Sci. 56: 58-62 (1967). Absorption, Metabolism, and Excretion of Riboflavin-5'-phosphate in Man

By WILLIAM J. JUSKO and GERHARD LEVY

My UB teachers and mentors.

Milo Gibaldi

Eino Nelson

Gerhard Levy

Wm. Jusko

J. Pharm. Sci. 58: 422-424 (1969).

Multicompartment Pharmacokinetic Models and Pharmacologic Effects

GERHARD LEVY, MILO GIBALDI, and WILLIAM J. JUSKO

LSD & Tissue Distribution: Hysteresis

Biophase model

Reprinted from THE LANCET, October 9, 1971, pp. 778-781

PREDNISONE SIDE-EFFECTS AND SERUM-PROTEIN LEVELS A Collaborative Study

George P. Lewis

WILLIAM J. JUSKO

Section of Clinical Pharmacology, Veterans Administration Hospital, Boston, Massachusetts, U.S.A.

SIDE EFFECTS (in 240 Pts)

Facial Plethora	14
Hemorrhage	12
Psychoses	10
Hyperglycemia	6
Myopathy	1

Rose JQ & Jusko WJ, HPLC Assay, J Chrom 162: 273 (1979) Corticosteroid Pharmacological Effects

- Immunological Effects
 - Immunosuppressive
 - Anti-inflammatory
- ⇒ Treatment for Immune Related Diseases
 Rheumatoid arthritis
 - Lupus erythematosus
 - Bronchial asthma
 - Organ transplantation

- Metabolic Effects
 - Carbohydrate metabolism
 - Lipid metabolism
 - Protein metabolism

Adverse Effects

- \Rightarrow steroid diabetes
- \Rightarrow abnormal fat distribution
- \Rightarrow muscle wasting

negative nitrogen balance

Corticosteroid Pharmacokinetics in Man

Absorption F = 2 - 80 % First-pass

Distribution

Moderate (lipophilic) PGP Substrates

Metabolism

Extensive (Hepatic, Renal) **Reversible**

Renal Excretion Slight

Jusko WJ, Ludwig EA, Corticosteroids Chap. 27, *Applied Pharmacokinetics* (1992).

Cheng H, Jusko WJ, Bioph. Drug Disp. 14: 721 (1993).

Array of Basic Pharmacokinetic Models

Adapted from Jusko, Guidelines for Pharmacokinetic Analysis, Applied Pharmacokinetics (2005).

Pharmacologic target-mediated drug
dispositionClin Pharmacol Ther. 56:248-52 (1994).Gerhard Levy, PharmD Amherst, N.Y.

D. Mager

Key Processes in Pharmacokinetics: PBPK

Process	Equation	Origin
Diffusion	$\frac{dA}{dt} = PS(C_h - C_l)$	Fick (1855)
Perfusion	$\frac{dA}{dt} = Q(C_a - C_v)$	Fick (1855), Teorell (1937)
Convection	$\frac{dA}{dt} = L(1-\sigma) \cdot C$	Renkin (1979)
Transit	$\frac{dC_i}{dt} = \frac{1}{\tau} \left(C_{i-1} - C_i \right)$	Bischoff & Dedrick (1973)
Distribution	$CL_D = Q(1 - e^{-PS/Q})$	Stec & Atkinson (1981)
Organ Clearance	$CL = \frac{Q \cdot CL_{\text{int}}}{Q + CL_{\text{int}}}$	Rowland, Benet et al (1973)

.....plus metabolism, transport, plasma and tissue binding

Minimal PBPK Models – Small & Large Molecules

Basic Tenets of Pharmacodynamics

Capacity-Limitation Turnover & Homeostasis $E = \frac{E_{max} \bullet C^{\gamma}}{EC_{50}^{\gamma} + C^{\gamma}}$ Hill Function Concentration Turnover & Homeostasis Production $\frac{dR}{dt} = k_{production} - k_{loss} \bullet R$

The Law of Mass Action ($D + R \rightleftharpoons DR$) and small quantity of targets leads to capacity-limitations in most body functions. Both diseases and therapeutic agents often interfere with the homeostasis in the body resulting from the natural turnover of biological substances, structures, or functions.

Processes Described by Capacity-Limited Relationships

Process	Equation	Origin
Metabolic Rate	$\frac{dA_m}{dt} = \frac{V_{\max} \cdot C}{K_m + C}$	Michaelis-Menten (1913)
Transport Rate	$\frac{dAu}{dt} = \frac{T_{\max} \cdot C}{K_m + C}$	Shannon (1939)
Protein Binding (D _b = Bound Drug)	$D_b = rac{n \cdot Pt \cdot D_f}{1/K_A + D_f}$	Goldstein (1949)
Receptor Binding (B _{sp} = Bound Drug)	$B_{sp} = \frac{B_{\max} \cdot D_f}{K_D + D_f}$	Clark (1933)
Transduction	$E = \frac{E_m \cdot B_{sp}}{K_E + B_{sp}}$	Black & Leff (1983)
Pharmacologic Effect	$E = \frac{E_{\max} \cdot C}{EC_{50} + C}$	Hill (1910)
		vvj jusku, j Cun r narmacol <u>29</u> : 400 (1989)

Biological Turnover Rates of Structures or Functions

CS Effects on Cell Trafficking

Kong AN, Ludwig EA, Slaughter RL, DiStefano PM, Demasi J, Jusko, WJ. Pharmacokinetics and pharmacodynamics modeling of direct suppression effects of methylprednisolone on serum cortisol and blood histamine in human subjects. Clin. Pharmacol. Ther. 46:616 (1989).

Sex and Methylprednisolone PK/PD

Lew KH et al, *Clin. Pharmacol. Ther.* <u>54</u>: 402 (1993).

Cortisol

Family of Indirect Response Models

Levy et al, CPT 10: 22 (1964); Dayneka, Garg, Jusko, JPB 21: 457 (1993), Jusko & Ko, CPT 56: 406 (1994); Sharma A and Jusko WJ, *BJCP* <u>45</u>: 229 (1998).

PAIN: PK/PD of Antinociceptive Drug Effects

Rats received injection of uric acid in knee joint to induce dysfunction. Lower Index % = less pain.

PK and PD were fitted jointly using population methodology.

Flores-Murrieta, Kimko, Jusko, et al, *JPB* <u>26</u>: 547 (1998).

Complex Indirect Response Models

Circadian Input

$$k_{in}(t) = R_m + R_b \cdot \cos\left[\left(t - t_z\right) \cdot 2\pi/24\right]$$

Krzyzanski et al., Chronobiol Int. 17:77 (2000)

Cell Life-Span IRM

$$k_{out} = k_{in} \cdot (t - TR)$$

Krzyzanski, et al., JPB 27:467 (1999) Krzyzanski, et al., JPP 33:125 (2006).

Precursor-Dependent IRM

Physiological Limits

$$\frac{dR}{dt} = k_{in} \cdot H(C) - k_{out} \cdot R \cdot \left(1 - \frac{R_L}{R}\right)$$

Yao, Krzyzanski et al., JPP 33:167 (2006)

Drug Interactions: Indirect Response Models

Competitive

Basic Models IC₅₀ Inhibition SC₅₀ Stimulation

Noncompetitive Same

Noncompetitive Different

Earp JC, Krzyzanski W, Jusko WJ, JPKPD <u>31</u>: 345 (2004).

Chemotherapeutic Targets: Basic Model Paradigm

Jusko WJ, A Pharmacodynamic Model for Cell Cycle-Specific Chemotherapeutic Agents, JPB 1: 175 (1973).

Signal Transduction - Transit Models

Adapted from: Harden TK, Leff P, Receptor-Based Drug Design, Marcel Dekker

Black JW and Leff P, Operational models of pharmacologic agonism, Proc Roy Soc London B Biol Sci 220: 141 (1983) Sun YN & Jusko, JPB, Mager D & Jusko WJ, Pharmacodynamic modeling of time-dependent transduction systems, *CPT* <u>70</u>: 210 (2001).

Array of Basic PK/PD Models

CS & Systems PK/PD: Drugs & Genes & Models

Mechanisms of CS Action: Giant Rat Studies

By V Ayyar

Hypothesis: Realistic and comprehensive PK/PD models of corticosteroid (CS) action are feasible which permit more mechanistic insights into drug, dosage, and interaction factors which determine their effects.

Corticosteroid Pharmacokinetics and Pharmacodynamics

NIH Grant GM 24211-42 (Jusko, Almon, DuBois, Androlakis)

Specific Aims

- **1.** Assess sex differences in circadian rhythms in rats
- 2. Sex differences in metabolic effects (glucose, lipids, etc)
- 3. Assess sex differences relating to anti-inflammatory and bone turnover systems in response to CS
- 4. Evolve systems pharmacology models to characterize global genomic, proteomic, and biomarker responses to CS in M & F rats

Androlakis

Circadian Rhythms in Gene Expression in Rat Lungs

Time, hours

Liver: J. Pharmacol. Exp. Ther. <u>326</u>: 700 (2008).

Muscle: Am. J. Physiol. Reg Int. Comp. Physiol. 295: R1031 (2008).

Fat: Physiol. Genomics <u>42A</u>: 141(2010).

Corticosteroid PK/PD/PG in Rat Liver

Corticosteroid PK/PD/PG Model

CS Effects on Diverse Genes in Rat Liver

Yang et al, *JPET* <u>324</u>: 1243 (2008) Use of Affymetrix Microarrays. Nouri-Nigjeh E et al, Large-Scale Quantitative Proteomics with Application to Protein Expression Dynamics Induced by Methylprednisolone, Analytical Chem. 86: 8149 (2014).

Arthritis Disease Progression Model

Rats with Collagen-Induced Arthritis -Treatment with Dexamethasone.

Time (hours post induction)

Earp J et al., JPET <u>326</u>: 532 & 546 (2008)

CS PD: Cytokine mRNA – Key MoA

RA - CS PK/PD/PG/DIS Model

Receptor/Gene/Protein-Mediated Signaling Connects Methylprednisolone Exposure to Metabolic and Immune-Related Pharmacodynamic Actions in Liver

Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, and Jusko WJ, JPKPD (2018).

Aspirations of Translational Systems Biology & Pharmacology

Summary

- PK, PD, and systems pharmacology models are premised on many basic laws of nature, biology, and pharmacology.
- Studies of properties of diverse drugs such as steroids have helped evolve PK from empirical NCA and compartment analyses to mechanistic and physiologically-based models.
- The principles of capacity-limitation in PK and target occupancy and types & rates of turnover processes serve as tenets for diverse pharmacodynamic and systems models.
- Addressing basic and translational aspects of PK/PD has provided me with extremely interesting and enjoyable opportunities and interactions in research, education, training, administration, consulting, and travel.

With Considerable Thanks

